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Abstract 

The problem of Dirichlet is often partially studied in analysis, the purpose 

of this article is to bring this problem back to Riemannian geometry and 

make it a wider field of resolution on Riemannian varieties. This paper 

reports on our joint work [6]. 

1. Introduction 

Let M be a Riemannian variety, and M⊂Ω  consider the problem of 

minimising 

∫Ω
∇ ,

2

1 2
dxu  

where Ω  is a bounded, regular, simply connected domain in M and 1: S→Ωu  is a 

unit vector field with a Dirichlet boundary condition ,: 1
S→Ω∂g  which is, say, 

.1C  
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Two cases occur: 

(1) ( ) ,0deg =g  here ( )gdeg  is the winding number of the map g. In this case, 

we may write ,φ= ieg  where .: R→Ω∂φ  If we call φ
~

 the harmonic extension of 

φ  to ,Ω  φie  is the solution to our minimisation problem. 

(2) ( ) .0deg ≠g  Here we know that no continuous extension of g inside Ω  

exists. Worse, no finite energy extension exists. An intuitive justification for this may 

be that according to a results of Baird and Kamissoko [1], Schoen and Uhlenbeck 

[5], smooth maps are dense in the Sobolev space ( ),, 11
SΩH  thus a finite energy 

extension would be close to a continuous one, which does not exist. However, using 

results of Bethuel et al. [2], a variational problem can still be worked out. 

Consider the set C  of maps from Ω  to 1
S  that are sufficiently smooth outside a 

unite number of points in ,Ω  and such that if C∈u  and p is a singularity of u, 

( ) px

px
i p

exux
−

−
θ

−→  is smooth in a neighborhood of p, for some number .pθ  For 

any ,C∈u  ( ) ,,deg nu =Ω∂  where n is the number of singular points of u. 

Moreover, writhing ( ) { }nppus ...,,1=  and ( )rpD ,  the disc of radius r centered at 

p, the limit 

( )
,

1
log

2

1
lim

,\

2

0
1

∫ εΩ→ε
=

ε
π−∇

i
n
i

pDU
ndxu  

exists, we call it ( ).uE  Note that 

( ) ( )∫ ε
∇=

ε
π

,0\1,0

2

,
2

11
log

DD
dx

x

x
 

which explains the above expansion of the energy. 

The aforementioned results of [2] are that for any given map 1: S→Ωg  with 

degree n and any n-tuple of distinct points in ,Ω  { },...,,1 npp   there exists a unique 

C∈u   agreeing with g on the boundary, with singular set ( ) { },...,,1 nppus =  and 

harmonic in the classical sense outside ( ).us  Moreover, 
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( )
( ) { }

( ),min
...,,1

vEuE
nppvsongvv =Ω∂=∈

=
C

 

and ( )uE  can be computed as a function of g, { }npp ...,,1  called the renormalized 

energy, { }( )., ipgW  This function is computed in [2], a nice expression was given 

by Leffter and Radulescu [3] in the case where Ω  is the unit disc and g is the map 

.θθ → ini ee  Also, using a remark of C. Ragazzo (see [2]), the following expression 

for W can given. 

For Ω∂∈x  let the real function ( ) ( ) ( ),xgxgxf τ∧=  where the subscript τ  

denotes the derivative of in the direction tangent to Ω∂  (if ,φ= ieg  then ).τφ=f  

Call R→Ω×Ω:gG  the solution to the following problem: 

( )

( ) ( ) ( )

( ) ( ) ( )












Ω∈=

Ω∂∈Ω∈=

Ω∈πδ=∆

∫ Ω∂
.0,

,,

,2,

pxdlxfpxG

xpxfpxG

pxpxG

g

vg

pgx

x
  (1) 

It is a fact that ( ) ( ) pxpxGpx gg −−=γ log,,  is a smooth function on 

,Ω×Ω  and the renormalized energy is 

( ) ( ) ( ).,,...,,, 1 ∑∑ γ−π−=

≠ i

iig

ji

jign ppppGppgW   (1) 

2. Results 

Now, our concern is the following: Let 
n

ng






 →Ω∂ 1: S  be a sequence of 

boundary maps such that 

( ) ,deg ngn =  

and suppose that { }nnnn ppS ,,1 ...,,=  minimises ( ),.,ngW  over all n-tuples of 

distinct points in .Ω  What does nS  look like, asymptotically? We give a result, a 

sketch of its proof, and in the next section, a list of open problems. 
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Theorem 1. Suppose 1: S→Ω∂g  has degree 1, and for any N∈n  let 

,n
n gg =  and { }nnn pp ,,1 ...,,  be a minimiser of ( )..,ngW  Then the sequence of 

probability measures 

∑
=

δ=µ

n

i

pn nin
1

,

1
 

converges weakly to a probability measure µ  with the following properties: 

1. ,
2

1
dlf +

π
≤µ  where ,τ∧= ggf  the superscript ‘+’ denotes the positive 

part, and dl is the line element of .Ω∂  

2. When 0≥f  this corresponds to the case of a monotonous g – then 

necessarily fdl=µ  since 

( ).deg2 gdlggfdl π=∧= ∫∫ Ω∂
τ

Ω∂
 

Sketch of the proof. We may write (1) in terms of the measures nµ  as 

( ) ( ) ( ) ( ) ( ) ( )∫∫∫ ΓΓΩ×Ω
µγπ−µµπ−=µ ,,,,

\

2
xdxxnydxdyxGngW ngnngnn  

where Γ  is the diagonal of .Ω×Ω  

Guessing what the limit of the nµ ’s should be is now quite easy. It will be the 

minimiser of a functional defined on the set of all probability measures, a functional 

which is the limit of the one above as n goes to infinity, and whose expression we 

have no difficulty guessing: 

( ) ( ) ( ) ( ).,: ∫∫ Ω×Ω
µµ−=µ ydxdyxGI gg  

All we have done is keep the 2n  term in ,nW  integrating it over Ω×Ω  instead 

of  ΓΩ×Ω \  in order to have a well-posed minimisation problem. 

There are now two steps in the proof. First, we need to prove that the functional 

gI  is indeed the (gamma) limit of the functionals .nW  More precisely, we mean that 
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the minimisers of nW  over all probability measures that are average of n Dirac 

masses converge to minimisers of gI  over the set of probability measures supported 

in .Ω  There are no difficulties in this step worth mentioning. 

The second step is to characterize the minimisers of .gI  Although this is 

technically easier than the first step, we give an idea of how this goes. First, it is 

useful to deduce a different expression for the energy .gI  Denote by ( )yxG ,0  the 

solution of 

( )

( )

( )












Ω∈=

Ω∂∈=

Ωπδ=∆

∫ Ω∂
.0,

Constant,

2,

0

0

0

yeveryfordxyxG

xforyxG

inyxG

xv

yx

 

It is easy to check, using Green’s identity, that 

( ) ( ) ( ) ( )( ) ( )∫ Ω∂
+

π
−= duugyuGxuGyxGyxGg ,,

2

1
,, 000   

( ) ( ) ( )∫∫ Ω∂×Ω∂π
+ .,

4

1
02

dudvvgugvuG   (2) 

Replacing ( )yxGg ,  in the expression for gI  yields ( ) ( ),gg II µ−µ=µ  where 

I is the new functional 

( ) ( ) ( ) ( )∫∫ Ω×Ω
−= ,,0 ydvxdvyxGvI  

and where gµ  is the measure in Ω  given by 

.
2

1
dlggg τ∧

π
=µ  

Then, it is probably well-known and, in any case, easy to prove that ( ).I  is a 

positive strictly convex function over a suitable subset of the set of measures with 

zero mass. If gµ  is a positive measure, it is clear then that gµ=µ  is the unique 

minimiser of ( )gI µ−.  over the set of probability measures supported in .Ω  
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When gµ  is not positive, it obviously cannot be the minimiser, since it is not a 

probability measure and an additional argument must be used. 

3. Three Open Problems 

When trying to improve a Theorem, one usually tries to either weaken the 

hypothesis, strengthen the conclusion, or a combination of both. Here is a list of 

possibilities: 

1. Take any sequence of boundary maps 1: S→Ω∂ng  such that 

( ) .deg ngn =  

For such a sequence, there is a corresponding sequence of probability measures nµ  

that minimise the renormalized energy. What are the accumulation points (in the 

weak topology) of such a sequence of measures? It should be true that they are all 

measures supported in .Ω∂  

2. If the case we described, i.e., n
n gg = - or more generally, if ( )τ∧ nn gg

n

1
 

is bounded on Ω∂  independently of n- can one prove that if { }npp ,11,1 ...,,  is a 

minimiser of ( ),.,ngW  then 

( )
n

C
pd ni ≤Ω∂,,  

for every ,ni ≤ for some constant C independent of n? 

3. This one is a mind-teaser: If Ω  is the unit disc and ng  is the map 

,
θθ → ini

ee  prove that { }npp ,11,1 ...,,  are located at the vertices of a regular n-gon 

centerd at 0. As we said earlier, there is a nice expression for W in this case, 

computed in [5], 

( ) ∑∑ −π−−−π−=

≠ i

i

ji

jijin pppppppW .1log1log...,,
2

1  

To our knowledge, the symmetry of minimising configurations is open for n as 

small as 3. 
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