# THE DIRICHLET PROBLEM ON A RIEMANNIAN VARIETY 

## DANTOUMA KAMISSOKO

Département de Mathématiques
Université de Bretagne Occidentale
6 Avenue Le Gorgeu
B. P. 452, 2928 Brest Cedex

France


#### Abstract

The problem of Dirichlet is often partially studied in analysis, the purpose of this article is to bring this problem back to Riemannian geometry and make it a wider field of resolution on Riemannian varieties. This paper reports on our joint work [6].


## 1. Introduction

Let $M$ be a Riemannian variety, and $\Omega \subset M$ consider the problem of minimising

$$
\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x
$$

where $\Omega$ is a bounded, regular, simply connected domain in $M$ and $u: \Omega \rightarrow \mathbb{S}^{1}$ is a unit vector field with a Dirichlet boundary condition $g: \partial \Omega \rightarrow \mathbb{S}^{1}$, which is, say, $C^{1}$.
Received February 6, 2019
2010 Mathematics Subject Classification: 58E20, 49J10, 82D55.
Keywords and phrases: minimisation, renormalized energy, degree.
© 2019 Pioneer Scientific Publisher

Two cases occur:
(1) $\operatorname{deg}(g)=0$, here $\operatorname{deg}(g)$ is the winding number of the map $g$. In this case, we may write $g=e^{i \phi}$, where $\phi: \partial \Omega \rightarrow \mathbb{R}$. If we call $\tilde{\phi}$ the harmonic extension of $\phi$ to $\Omega, e^{i \phi}$ is the solution to our minimisation problem.
(2) $\operatorname{deg}(g) \neq 0$. Here we know that no continuous extension of $g$ inside $\Omega$ exists. Worse, no finite energy extension exists. An intuitive justification for this may be that according to a results of Baird and Kamissoko [1], Schoen and Uhlenbeck [5], smooth maps are dense in the Sobolev space $H^{1}\left(\Omega, \mathbb{S}^{1}\right)$, thus a finite energy extension would be close to a continuous one, which does not exist. However, using results of Bethuel et al. [2], a variational problem can still be worked out.

Consider the set $\mathcal{C}$ of maps from $\Omega$ to $\mathbb{S}^{1}$ that are sufficiently smooth outside a unite number of points in $\Omega$, and such that if $u \in \mathcal{C}$ and $p$ is a singularity of $u$, $x \rightarrow u(x)-e^{i \theta_{p} \frac{x-p}{|x-p|}}$ is smooth in a neighborhood of $p$, for some number $\theta_{p}$. For any $u \in \mathcal{C}, \quad \operatorname{deg}(u, \partial \Omega)=n$, where $n$ is the number of singular points of $u$. Moreover, writhing $s(u)=\left\{p_{1}, \ldots, p_{n}\right\}$ and $D(p, r)$ the disc of radius $r$ centered at $p$, the limit

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{2} \int_{\Omega \backslash U_{i=1}^{n} D\left(p_{i}, \varepsilon\right)}|\nabla u|^{2} d x-\pi n \log \frac{1}{\varepsilon}
$$

exists, we call it $E(u)$. Note that

$$
\pi \log \frac{1}{\varepsilon}=\frac{1}{2} \int_{D(0,1) \backslash D(0, \varepsilon)}\left|\nabla \frac{x}{|x|}\right|^{2} d x
$$

which explains the above expansion of the energy.
The aforementioned results of [2] are that for any given map $g: \Omega \rightarrow \mathbb{S}^{1}$ with degree $n$ and any $n$-tuple of distinct points in $\Omega,\left\{p_{1}, \ldots, p_{n}\right\}$, there exists a unique $u \in \mathcal{C}$ agreeing with $g$ on the boundary, with singular set $s(u)=\left\{p_{1}, \ldots, p_{n}\right\}$, and harmonic in the classical sense outside $s(u)$. Moreover,

$$
E(u)=\min _{v \in \mathcal{C} v=g \text { on } \partial \Omega s(v)=\left\{p_{1}, \ldots, p_{n}\right\}} E(v),
$$

and $E(u)$ can be computed as a function of $g,\left\{p_{1}, \ldots, p_{n}\right\}$ called the renormalized energy, $W\left(g,\left\{p_{i}\right\}\right)$. This function is computed in [2], a nice expression was given by Leffter and Radulescu [3] in the case where $\Omega$ is the unit disc and $g$ is the map $e^{i \theta} \rightarrow e^{i n \theta}$. Also, using a remark of C. Ragazzo (see [2]), the following expression for $W$ can given.

For $x \in \partial \Omega$ let the real function $f(x)=g(x) \wedge g_{\tau}(x)$, where the subscript $\tau$ denotes the derivative of in the direction tangent to $\partial \Omega$ (if $g=e^{i \phi}$, then $f=\phi_{\tau}$ ). Call $G_{g}: \Omega \times \Omega \rightarrow \mathbb{R}$ the solution to the following problem:

$$
\begin{cases}\Delta_{x} G_{g}(x, p)=2 \pi \delta_{p} & x, p \in \Omega  \tag{1}\\ \left(G_{g}\right)_{v_{x}}(x, p)=f(x) & p \in \Omega, x \in \partial \Omega \\ \int_{\partial \Omega} G_{g}(x, p) f(x) d l(x)=0 & p \in \Omega\end{cases}
$$

It is a fact that $\gamma_{g}(x, p)=G_{g}(x, p)-\log |x-p|$ is a smooth function on $\Omega \times \Omega$, and the renormalized energy is

$$
\begin{equation*}
W\left(g, p_{1}, \ldots, p_{n}\right)=-\pi \sum_{i \neq j} G_{g}\left(p_{i}, p_{j}\right)-\sum_{i} \gamma_{g}\left(p_{i}, p_{i}\right) \tag{1}
\end{equation*}
$$

## 2. Results

Now, our concern is the following: Let $\left\{g_{n}: \partial \Omega \rightarrow \mathbb{S}^{1}\right\}_{n}$ be a sequence of boundary maps such that

$$
\operatorname{deg}\left(g_{n}\right)=n
$$

and suppose that $S_{n}=\left\{p_{1, n}, \ldots, p_{n, n}\right\}$ minimises $W\left(g_{n},.\right)$, over all $n$-tuples of distinct points in $\Omega$. What does $S_{n}$ look like, asymptotically? We give a result, a sketch of its proof, and in the next section, a list of open problems.

Theorem 1. Suppose $g: \partial \Omega \rightarrow \mathbb{S}^{1}$ has degree 1 , and for any $n \in \mathbb{N}$ let $g_{n}=g^{n}$, and $\left\{p_{1, n}, \ldots, p_{n, n}\right\}$ be a minimiser of $W\left(g_{n},.\right)$. Then the sequence of probability measures

$$
\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{p_{i, n}}
$$

converges weakly to a probability measure $\bar{\mu}$ with the following properties:

1. $\bar{\mu} \leq \frac{1}{2 \pi} f^{+} d l$, where $f=g \wedge g_{\tau}$, the superscript ' + ' denotes the positive part, and dl is the line element of $\partial \Omega$.
2. When $f \geq 0$ this corresponds to the case of a monotonous $g$ - then necessarily $\bar{\mu}=$ fdl since

$$
\int_{\partial \Omega} f d l=\int_{\partial \Omega} g \wedge g_{\tau} d l=2 \pi \operatorname{deg}(g)
$$

Sketch of the proof. We may write (1) in terms of the measures $\mu_{n}$ as

$$
W_{n}\left(\mu_{n}, g\right)=-\pi n^{2} \iint_{\Omega \times \Omega \backslash \Gamma} G_{g}(x, y) d \mu_{n}(x) d \mu_{n}(y)-\pi n \int_{\Gamma} \gamma_{g}(x, x) d \mu_{n}(x)
$$

where $\Gamma$ is the diagonal of $\Omega \times \Omega$.
Guessing what the limit of the $\mu_{n}$ 's should be is now quite easy. It will be the minimiser of a functional defined on the set of all probability measures, a functional which is the limit of the one above as $n$ goes to infinity, and whose expression we have no difficulty guessing:

$$
I_{g}(\mu):=-\iint_{\bar{\Omega} \times \bar{\Omega}} G_{g}(x, y) d \mu(x) d \mu(y)
$$

All we have done is keep the $n^{2}$ term in $W_{n}$, integrating it over $\bar{\Omega} \times \bar{\Omega}$ instead of $\bar{\Omega} \times \bar{\Omega} \backslash \Gamma$ in order to have a well-posed minimisation problem.

There are now two steps in the proof. First, we need to prove that the functional $I_{g}$ is indeed the (gamma) limit of the functionals $W_{n}$. More precisely, we mean that
the minimisers of $W_{n}$ over all probability measures that are average of $n$ Dirac masses converge to minimisers of $I_{g}$ over the set of probability measures supported in $\bar{\Omega}$. There are no difficulties in this step worth mentioning.

The second step is to characterize the minimisers of $I_{g}$. Although this is technically easier than the first step, we give an idea of how this goes. First, it is useful to deduce a different expression for the energy $I_{g}$. Denote by $G_{0}(x, y)$ the solution of

$$
\begin{cases}\Delta_{x} G_{0}(x, y)=2 \pi \delta_{y} & \text { in } \Omega \\ G_{0 v_{x}}(x, y)=\text { Constant } & \text { for } x \in \partial \Omega \\ \int_{\partial \Omega} G_{0}(x, y) d x=0 & \text { for every } y \in \Omega\end{cases}
$$

It is easy to check, using Green's identity, that

$$
\begin{align*}
G_{g}(x, y)= & G_{0}(x, y)-\frac{1}{2 \pi} \int_{\partial \Omega}\left(G_{0}(u, x)+G_{0}(u, y)\right) g(u) d u \\
& +\frac{1}{4 \pi^{2}} \iint_{\partial \Omega \times \partial \Omega} G_{0}(u, v) g(u) g(v) d u d v . \tag{2}
\end{align*}
$$

Replacing $G_{g}(x, y)$ in the expression for $I_{g}$ yields $I_{g}(\mu)=I\left(\mu-\mu_{g}\right)$, where $I$ is the new functional

$$
I(v)=-\iint_{\bar{\Omega} \times \bar{\Omega}} G_{0}(x, y) d v(x) d v(y)
$$

and where $\mu_{g}$ is the measure in $\bar{\Omega}$ given by

$$
\mu_{g}=\frac{1}{2 \pi} g \wedge g_{\tau} d l
$$

Then, it is probably well-known and, in any case, easy to prove that $I($.$) is a$ positive strictly convex function over a suitable subset of the set of measures with zero mass. If $\mu_{g}$ is a positive measure, it is clear then that $\bar{\mu}=\mu_{g}$ is the unique minimiser of $I\left(.-\mu_{g}\right)$ over the set of probability measures supported in $\bar{\Omega}$.

When $\mu_{g}$ is not positive, it obviously cannot be the minimiser, since it is not a probability measure and an additional argument must be used.

## 3. Three Open Problems

When trying to improve a Theorem, one usually tries to either weaken the hypothesis, strengthen the conclusion, or a combination of both. Here is a list of possibilities:

1. Take any sequence of boundary maps $g_{n}: \partial \Omega \rightarrow \mathbb{S}^{1}$ such that

$$
\operatorname{deg}\left(g_{n}\right)=n
$$

For such a sequence, there is a corresponding sequence of probability measures $\mu_{n}$ that minimise the renormalized energy. What are the accumulation points (in the weak topology) of such a sequence of measures? It should be true that they are all measures supported in $\partial \Omega$.
2. If the case we described, i.e., $g_{n}=g^{n}$ - or more generally, if $\frac{1}{n} g_{n} \wedge\left(g_{n}\right)_{\tau}$ is bounded on $\partial \Omega$ independently of $n$ - can one prove that if $\left\{p_{1,1}, \ldots, p_{1, n}\right\}$ is a minimiser of $W\left(g_{n},.\right)$, then

$$
d\left(p_{i, n}, \partial \Omega\right) \leq \frac{C}{n}
$$

for every $i \leq n$, for some constant $C$ independent of $n$ ?
3. This one is a mind-teaser: If $\Omega$ is the unit disc and $g_{n}$ is the map $e^{i \theta} \rightarrow e^{i n \theta}$, prove that $\left\{p_{1,1}, \ldots, p_{1, n}\right\}$ are located at the vertices of a regular $n$-gon centerd at 0 . As we said earlier, there is a nice expression for $W$ in this case, computed in [5],

$$
W\left(p_{1}, \ldots, p_{n}\right)=-\pi \sum_{i \neq j} \log \left|p_{i}-p_{j}\right|\left|1-p_{i} \bar{p}_{j}\right|-\pi \sum_{i} \log \left|1-\left|p_{i}\right|^{2}\right|
$$

To our knowledge, the symmetry of minimising configurations is open for $n$ as small as 3 .

## References

[1] P. Baird and D. Kamissoko, On constructing biharmonic maps and metrics, Annals of Global Analysis and Geometry 23(1) (2003), 65-75.
[2] F. Bethuel, H. Brezis and F. Hélein, Lecture notes on Ginzburg-Landau vortices, Scuola Normale Superiore de Pisa, 1995.
[3] C. Leffter and V. Radulescu, Minimization problems, corresponding energy renormalizations, Diff. Int. Equations (to appear).
[4] Edward B. Saff and Vilmos Totik, Logarithmic potentials with external fields, Appendix B by Thomas Bloom, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 316, Springer-Verlag, Berlin, 1997.
[5] R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18(2) (1983), 253-268.
[6] S. Serfaty, Local minimizers for the Ginzburg-Landau energy near critical magnetic field, II. Commun. Contemp. Math. 1(3) (1999), 295-333.

