

Pioneer Journal of Mathematics and Mathematical Sciences. Volume 25, Number 1, 2019, Pages 1-7 This paper is available online on February 25, 2019 at http://www.pspchy.com/content_PJMMS.html

THE DIRICHLET PROBLEM ON A RIEMANNIAN VARIETY

DANTOUMA KAMISSOKO

Département de Mathématiques Université de Bretagne Occidentale 6 Avenue Le Gorgeu B. P. 452, 2928 Brest Cedex France

Abstract

The problem of Dirichlet is often partially studied in analysis, the purpose of this article is to bring this problem back to Riemannian geometry and make it a wider field of resolution on Riemannian varieties. This paper reports on our joint work [6].

1. Introduction

Let M be a Riemannian variety, and $\Omega \subset M$ consider the problem of minimising

$$\frac{1}{2}\int_{\Omega}|\nabla u|^2dx,$$

where Ω is a bounded, regular, simply connected domain in *M* and $u : \Omega \to \mathbb{S}^1$ is a unit vector field with a Dirichlet boundary condition $g : \partial \Omega \to \mathbb{S}^1$, which is, say, C^1 .

Received February 6, 2019

2010 Mathematics Subject Classification: 58E20, 49J10, 82D55.

Keywords and phrases: minimisation, renormalized energy, degree.

© 2019 Pioneer Scientific Publisher

Two cases occur:

(1) $\deg(g) = 0$, here $\deg(g)$ is the winding number of the map g. In this case, we may write $g = e^{i\phi}$, where $\phi : \partial\Omega \to \mathbb{R}$. If we call $\tilde{\phi}$ the harmonic extension of ϕ to Ω , $e^{i\phi}$ is the solution to our minimisation problem.

(2) $\deg(g) \neq 0$. Here we know that no continuous extension of g inside Ω exists. Worse, no finite energy extension exists. An intuitive justification for this may be that according to a results of Baird and Kamissoko [1], Schoen and Uhlenbeck [5], smooth maps are dense in the Sobolev space $H^1(\Omega, \mathbb{S}^1)$, thus a finite energy extension would be close to a continuous one, which does not exist. However, using results of Bethuel et al. [2], a variational problem can still be worked out.

Consider the set C of maps from Ω to \mathbb{S}^1 that are sufficiently smooth outside a unite number of points in Ω , and such that if $u \in C$ and p is a singularity of u, $x \to u(x) - e^{i\theta_p \frac{x-p}{|x-p|}}$ is smooth in a neighborhood of p, for some number θ_p . For any $u \in C$, $\deg(u, \partial \Omega) = n$, where n is the number of singular points of u. Moreover, writhing $s(u) = \{p_1, ..., p_n\}$ and D(p, r) the disc of radius r centered at p, the limit

$$\lim_{\varepsilon \to 0} \frac{1}{2} \int_{\Omega \setminus U_{i=1}^n D(p_i, \varepsilon)} |\nabla u|^2 dx - \pi n \log \frac{1}{\varepsilon},$$

exists, we call it E(u). Note that

$$\pi \log \frac{1}{\varepsilon} = \frac{1}{2} \int_{D(0, 1) \setminus D(0, \varepsilon)} \left| \nabla \frac{x}{|x|} \right|^2 dx,$$

which explains the above expansion of the energy.

The aforementioned results of [2] are that for any given map $g: \Omega \to \mathbb{S}^1$ with degree *n* and any *n*-tuple of distinct points in Ω , $\{p_1, ..., p_n\}$, there exists a unique $u \in C$ agreeing with g on the boundary, with singular set $s(u) = \{p_1, ..., p_n\}$, and harmonic in the classical sense outside s(u). Moreover,

$$E(u) = \min_{v \in \mathcal{C}v = g \text{ on } \partial\Omega s(v) = \{p_1, ..., p_n\}} E(v),$$

and E(u) can be computed as a function of g, $\{p_1, ..., p_n\}$ called the renormalized energy, $W(g, \{p_i\})$. This function is computed in [2], a nice expression was given by Leffter and Radulescu [3] in the case where Ω is the unit disc and g is the map $e^{i\theta} \rightarrow e^{in\theta}$. Also, using a remark of C. Ragazzo (see [2]), the following expression for W can given.

For $x \in \partial \Omega$ let the real function $f(x) = g(x) \wedge g_{\tau}(x)$, where the subscript τ denotes the derivative of in the direction tangent to $\partial \Omega$ (if $g = e^{i\phi}$, then $f = \phi_{\tau}$). Call $G_g : \Omega \times \Omega \to \mathbb{R}$ the solution to the following problem:

$$\begin{cases} \Delta_x G_g(x, p) = 2\pi \delta_p & x, p \in \Omega \\ (G_g)_{v_x}(x, p) = f(x) & p \in \Omega, x \in \partial\Omega \\ \int_{\partial\Omega} G_g(x, p) f(x) dl(x) = 0 & p \in \Omega. \end{cases}$$
(1)

It is a fact that $\gamma_g(x, p) = G_g(x, p) - \log|x - p|$ is a smooth function on $\Omega \times \Omega$, and the renormalized energy is

$$W(g, p_1, ..., p_n) = -\pi \sum_{i \neq j} G_g(p_i, p_j) - \sum_i \gamma_g(p_i, p_i).$$
(1)
2. Results

Now, our concern is the following: Let $\{g_n : \partial \Omega \to \mathbb{S}^1\}_n$ be a sequence of boundary maps such that

$$\deg(g_n) = n,$$

and suppose that $S_n = \{p_{1,n}, ..., p_{n,n}\}$ minimises $W(g_n, .)$, over all *n*-tuples of distinct points in Ω . What does S_n look like, asymptotically? We give a result, a sketch of its proof, and in the next section, a list of open problems.

Theorem 1. Suppose $g: \partial \Omega \to \mathbb{S}^1$ has degree 1, and for any $n \in \mathbb{N}$ let $g_n = g^n$, and $\{p_{1,n}, ..., p_{n,n}\}$ be a minimiser of $W(g_n, .)$. Then the sequence of probability measures

$$\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{p_{i,n}}$$

converges weakly to a probability measure $\overline{\mu}$ with the following properties:

1. $\overline{\mu} \leq \frac{1}{2\pi} f^+ dl$, where $f = g \wedge g_{\tau}$, the superscript '+' denotes the positive part, and dl is the line element of $\partial \Omega$.

2. When $f \ge 0$ this corresponds to the case of a monotonous g – then necessarily $\overline{\mu} = fdl$ since

$$\int_{\partial\Omega} f dl = \int_{\partial\Omega} g \wedge g_{\tau} dl = 2\pi \deg(g).$$

Sketch of the proof. We may write (1) in terms of the measures μ_n as

$$W_n(\mu_n, g) = -\pi n^2 \iint_{\Omega \times \Omega \setminus \Gamma} G_g(x, y) d\mu_n(x) d\mu_n(y) - \pi n \int_{\Gamma} \gamma_g(x, x) d\mu_n(x),$$

where Γ is the diagonal of $\Omega \times \Omega$.

Guessing what the limit of the μ_n 's should be is now quite easy. It will be the minimiser of a functional defined on the set of all probability measures, a functional which is the limit of the one above as *n* goes to infinity, and whose expression we have no difficulty guessing:

$$I_g(\mu) \coloneqq -\iint_{\overline{\Omega} \times \overline{\Omega}} G_g(x, y) d\mu(x) d\mu(y).$$

All we have done is keep the n^2 term in W_n , integrating it over $\overline{\Omega} \times \overline{\Omega}$ instead of $\overline{\Omega} \times \overline{\Omega} \setminus \Gamma$ in order to have a well-posed minimisation problem.

There are now two steps in the proof. First, we need to prove that the functional I_g is indeed the (gamma) limit of the functionals W_n . More precisely, we mean that

the minimisers of W_n over all probability measures that are average of *n* Dirac masses converge to minimisers of I_g over the set of probability measures supported in $\overline{\Omega}$. There are no difficulties in this step worth mentioning.

The second step is to characterize the minimisers of I_g . Although this is technically easier than the first step, we give an idea of how this goes. First, it is useful to deduce a different expression for the energy I_g . Denote by $G_0(x, y)$ the solution of

$$\begin{cases} \Delta_x G_0(x, y) = 2\pi \delta_y & \text{in } \Omega \\ G_{0\nu_x}(x, y) = \text{Constant} & \text{for } x \in \partial \Omega \\ \int_{\partial \Omega} G_0(x, y) dx = 0 & \text{for every } y \in \Omega. \end{cases}$$

It is easy to check, using Green's identity, that

$$G_g(x, y) = G_0(x, y) - \frac{1}{2\pi} \int_{\partial\Omega} (G_0(u, x) + G_0(u, y))g(u)du$$
$$+ \frac{1}{4\pi^2} \iint_{\partial\Omega \times \partial\Omega} G_0(u, v)g(u)g(v)dudv.$$
(2)

Replacing $G_g(x, y)$ in the expression for I_g yields $I_g(\mu) = I(\mu - \mu_g)$, where *I* is the new functional

$$I(v) = -\iint_{\overline{\Omega} \times \overline{\Omega}} G_0(x, y) dv(x) dv(y),$$

and where μ_g is the measure in $\overline{\Omega}$ given by

$$\mu_g = \frac{1}{2\pi} g \wedge g_{\tau} dl.$$

Then, it is probably well-known and, in any case, easy to prove that I(.) is a positive strictly convex function over a suitable subset of the set of measures with zero mass. If μ_g is a positive measure, it is clear then that $\overline{\mu} = \mu_g$ is the unique minimiser of $I(. - \mu_g)$ over the set of probability measures supported in $\overline{\Omega}$.

DANTOUMA KAMISSOKO

When μ_g is not positive, it obviously cannot be the minimiser, since it is not a probability measure and an additional argument must be used.

3. Three Open Problems

When trying to improve a Theorem, one usually tries to either weaken the hypothesis, strengthen the conclusion, or a combination of both. Here is a list of possibilities:

1. Take any sequence of boundary maps $g_n : \partial \Omega \to S^1$ such that

```
\deg(g_n) = n.
```

For such a sequence, there is a corresponding sequence of probability measures μ_n that minimise the renormalized energy. What are the accumulation points (in the weak topology) of such a sequence of measures? It should be true that they are all measures supported in $\partial\Omega$.

2. If the case we described, i.e., $g_n = g^n$ - or more generally, if $\frac{1}{n}g_n \wedge (g_n)_{\tau}$ is bounded on $\partial \Omega$ independently of *n*- can one prove that if $\{p_{1,1}, ..., p_{1,n}\}$ is a minimiser of $W(g_n, .)$, then

$$d(p_{i,n}, \partial \Omega) \leq \frac{C}{n}$$

for every $i \le n$, for some constant *C* independent of *n*?

3. This one is a mind-teaser: If Ω is the unit disc and g_n is the map $e^{i\theta} \rightarrow e^{in\theta}$, prove that $\{p_{1,1}, ..., p_{1,n}\}$ are located at the vertices of a regular *n*-gon centerd at 0. As we said earlier, there is a nice expression for W in this case, computed in [5],

$$W(p_1, ..., p_n) = -\pi \sum_{i \neq j} \log |p_i - p_j| |1 - p_i \overline{p}_j| - \pi \sum_i \log |1 - |p_i|^2 |.$$

To our knowledge, the symmetry of minimising configurations is open for n as small as 3.

References

- P. Baird and D. Kamissoko, On constructing biharmonic maps and metrics, Annals of Global Analysis and Geometry 23(1) (2003), 65-75.
- [2] F. Bethuel, H. Brezis and F. Hélein, Lecture notes on Ginzburg-Landau vortices, Scuola Normale Superiore de Pisa, 1995.
- [3] C. Leffter and V. Radulescu, Minimization problems, corresponding energy renormalizations, Diff. Int. Equations (to appear).
- [4] Edward B. Saff and Vilmos Totik, Logarithmic potentials with external fields, Appendix B by Thomas Bloom, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 316, Springer-Verlag, Berlin, 1997.
- [5] R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18(2) (1983), 253-268.
- [6] S. Serfaty, Local minimizers for the Ginzburg-Landau energy near critical magnetic field, II. Commun. Contemp. Math. 1(3) (1999), 295-333.

